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(a) (b) 
Figure 7. Model used in calculation of xor- (a) The dipoles are oriented 
in the direction of the unperturbed minimum, (b) Potential minimum 
in the presence of the internal field F. 

properties to be used are those for the time-average configuration 
and thus apply only if the period of observation (ca. one cycle of 
the alternating field) is long compared to periods for libration and 
hindered rotation of a water molecule in its network. Judging 
by the frequencies in Table II, at 300 GHz this requirement is 
on the verge of not being satisfied. 

The property to be analyzed is the dielectric constant at the 
beginning of the faster step, which is expressed by e„ for the slower 
step and is measured at about 300 GHz. Values at various tem­
peratures are listed in Table III. All are significantly greater 
than the value of n2 = 1.8 expected for distortion polarization 
alone. 

The gist of the mechanism to be proposed is that at frequencies 
at which the slower step is unable to follow, one can still have 
orientation polarization because the electric field perturbs eq 15 
and produces a small change in the angle 4> at which F(0) is at 
a minimum. This in turn slightly polarizes the molecular popu­
lation in the potential well. Debye has shown that when the 
unperturbed well is symmetric, such polarization is independent 
of the temperature.34 In terms of eq 3, it contributes an additive 
term to the polarizability: x = Xdistonion + Xor-

Table III lists values of xor calculated from «„ via eq 3 by letting 
gfi2/3kT = 0 and Xdistonion = 1.5 X 10"24, the value used by OK.22 

In Figure 7, let 8 denote the angle between the internal field F 
and the dipole direction in the unperturbed minimum. Let 58 and 
58' denote respectively the deviations of n and jtnwrk from 8. The 
perturbed potential minimum then is located according to (21). 

58 = -2a(\ - g/3) 58' = 2a{\ - 2g/3) 

a = 2nF(smd)/W ( 2 1 ) 

The moment m induced in the central water molecule is ~n58 sin 
8 = 4/^2F(sin2 6)(l - g/3)/W. The mean induced moment {m) 

(34) Debye, P. Polar Molecules, Dover Publications: New York, 1945; 
p 21. 

Liquids, like crystals, are conveniently classified into molecular 
and network categories. Water, with its hydrogen-bonded 

is then obtained by averaging m over all possible directions. The 
resulting polarizability is {m)jF. 

X01 = (m)/F = JoV(sin 6)/IF) A8 

= 8 M 2 ( 1 - £ / 3 ) / 3 W (22) 

Application of the two-state model then gives (23). Because 1 

8^2f «(1 - ^ A / 3 ) ( l - « ) ( l - f t , / 3 ) l , N 

*--!-[—WT~ + wB J (23) 

~ £ A / 3 — 0> Xor depends practically on state B. Equation 23 
involves no new parameters. 

Values calculated from (23) are included in Table III. They 
are clearly of the correct magnitude; the averages for the columns 
based on s„ and on eq 23 agree within the error limits. On the 
other hand, the values predicted from (23) show the greater 
temperature coefficient. On the whole, the agreement is good 
enough to warrant refinement of the model to allow for the high 
spectral frequency. 

Concluding Remarks. By defining the two states as water 
molecules with two different coordination numbers in a flexible 
network, some of the theoretical misgivings about the two-state 
model of water may have been overcome. If the two-state model 
is accepted, then the second, five-coordinated state is now as well 
characterized as the familiar four-coordinated state of Bernal and 
Fowler22 has been for some time. In its proposed version, the 
two-state model also explains some of the apparent "schizophrenia" 
of water. While some properties (such as the oxygen-oxygen 
radial distribution function of Morgan and Warren24a) are dom­
inated by features ascribable to the four-coordinated state, others 
(such as the dielectric relaxation spectrum) do not fit such a model 
at all, being dominated by the five-coordinated state. In its 
proposed version, the two-state model in no way forbids appropriate 
infrared spectral properties from reflecting quasi-continuous 
microscopic distributions and, thus, may defuse a controversy of 
long standing.173 Discreteness of state properties is expected only 
if the time scale of the experiment is long enough (probably at 
least 1 ps) to sample the time-average state of the network, and 
this is clearly not true at infrared frequencies. Finally, the mixing 
of four-coordinated and five-coordinated states results in a network 
with long-range disorder and thus satisfies an essential theoretical 
requirement for a liquid. 

Registry No. H2O, 7732-18-5. 

structure,2,3 is a network liquid. Solvation of a nonelectrolyte solute 
in a network liquid consists of two parts. There is ordinary direct 
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solvation, which involves precisely the same sort of physical in­
teractions that operate in molecular solvents. And there is per­
turbation of the solvent network by the added solute, which is 
peculiar to network liquids.4-5 

In a previous paper6 the author presented a general thermo­
dynamic approach for separating ordinary solvation from solute 
perturbation of the solvent network. To apply this approach to 
a specific network solvent, a model of network structure must be 
introduced. In this paper, the preceding two-state model of the 
water network7 will be used to examine the partial molar free 
energy, entropy, and heat capacity of hydration of noble gases, 
diatomic gases, and hydrocarbons.8 The analysis will yield fairly 
explicit descriptions of the solutes' perturbation of the water 
network. 

First, a brief orientation as to the magnitude of network per­
turbation effects is in order. In practice, one can gain such 
orientation by noting how much the properties of aqueous solutions 
deviate from predictions based on correlation schemes established 
for molecular solvents. It turns out that the size of the deviations 
depends very much on the property being considered. Standard 
partial molar free energies apparently show no deviations at all. 
This is clear, for example, from the far-reaching linear free energy 
correlations of physical organic chemistry,9 which make no 
qualitative distinction between network solvents (including water) 
and molecular solvents. The same model equations apply to both 
categories; solvent specificity enters only in the form of specific 
values for certain parameters.1 0 For example, the reference 
process for the well-known Hammett p-a equation is benzoic acid 
dissociation in water. Yet the set of substituent constants obtained 
in this way applies to standard free energy changes for several 
hundred reactions with equal validity in water, other protic sol­
vents, and aprotic solvents." 

On the other hand, Frank and Evans5 showed as early as 1945 
that partial molar entropies of hydration do not fit into correlation 
schemes established for molecular solvents; they are more negative 
for hydration. And recent advances in dilute-solution calorime-
try1 2 - 1 4 have given accurate heat capacities of hydration which 
are not only greater but markedly greater than the corresponding 
values for molecular solvents.8 

Thermodynamic Equations. The preceding aspects are consistent 
with the author's thermodynamic analysis,6 which will now be 
reviewed. When a liquid is said to be a network liquid, this implies, 
thermodynamically, that there exists a set of variables Ja1, a2, ..., 
a„( such that, when values are assigned to these variables, the 
thermodynamic state of the network is defined. The nature and 

(1) Work supported in part by a grant from the National Science Foun­
dation. 

(2) "Structural Models": Frank, H. S. in Water, A Comprehensive 
Treatise, Franks, F., Ed.; Plenum Press, New York, 1972; Vol. 1, Chapter 
14. 

(3) (a) Bernal, S. D.; Fowler, R. H. J. Chem. Phys. 1933, /, 515. (b) 
Haggis, G. H.; Hasted, J. B.; Buchanan, T. J. J. Chem. Phys. 1952, 20, 1452. 

(4) Gurney, R. W. Ionic Processes in Solution; McGraw-Hill Book Co.: 
New York, 1953. 

(5) (a) Frank, H. S. J. Chem. Phys. 1945, 13, 493. (b) Frank, H. S.; 
Evans, M. W. J. Chem. Phys. 1945, 13, 507. (c) Frank, H. S.; Wen, W.-Y. 
Discuss. Faraday Soc. 1957, 24, 113. (d) Frank, H. S.; Quist, A. S. J. Chem. 
Phys. 1961, 34, 604. 

(6) (a) Grunwald, E. J. Am. Chem. Soc. 1984, 106, 5414. (b) Correction: 
Ibid. 1986, 108, 1361. 

(7) Grunwald, E. J. Am. Chem. Soc, preceding paper in this issue. 
(8) For critical reviews see: (a) Wilhelm, E.; Battino, R.; Wilcock, R. J. 

Chem. Rev. 1977, 77, 121 (data in water), (b) Wilhelm, E.; Battino, R. Chem. 
Rev. 1973, 73, 1 (data in molecular solvents). 

(9) Hammett, L. P. Physical Organic Chemistry; 2nd ed.; McGraw-Hill 
Book Co.: New York, 1970; Chapters 8, 11, 12. 

(10) Leffler, J. E.; Grunwald, E. Rates and Equilibria of Organic Reac­
tions; Wiley: New York, 1963. 

(11) Jaffe, H. H. Chem. Rev. 1953, 53, 191. 
(12) (a) Mirejovsky, D.; Arnett, E.M.J. Am. Chem. Soc. 1983,105, 1112. 

(b) Picker, P.; Tremblay, E.; Philip, P. R.; Desnoyers, J. E. J. Chem. Ther-
modyn. 1971, 3, 631. (c) Mastroianni, M. J.; Criss, C. M. J. Chem. Eng. Data 
1972, /7,222. 

(13) (a) Gill, S. J.; Nichols, N. F.; Wadso, I. / . Chem. Thermodyn. 1975, 
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Table I. Definitions and Thermodynamic Equations for Network 
Solvents 

Definitions 
isodelphic, a solution process in which the thermodynamic state of 

the solvent network is constant (a = constant) 
lyodelphic, the net result of solute perturbation of the solvent 

network in a solution process 
a, variable which defines the thermodynamic state of the solvent 

network 
y = SG)Sa; at equilibrium (eq), y = 0 
Hx = (d2G/da2)-(da/dx)y 

subscripts: 1 = solvent, 2 — solute 
concentration units, such as m2 and X2, are independent of 

temperature 
Delphic Equations 

(dG/dn2)y = (dG/dn2)a + y(S a/Sn2),. (1) 

G2 = QG/dn^ = (dG/dn2)a (2) 

-S2 = (d2G/Sn2ST)^ = Q2GISn2ST)0 - (3) 
Q2GIS a2)[Q a I Sn2HSaQT)]^ 

-Cp2/T= Q'G/d^dT2)^ = Q1GfSn2ST2),, + (4) 
Q^G/Sa^lQa/SnJ-Qa/ST)2]^- [QhT/Sn2)(S a/ST) + 
Qh T/ST)Q a/Sn2) + QhJdT)Q a/dT)]^ 

Table II. Thermodynamic Equations for the Two-state Model of 
Water Network 

[B]/[A] = (X-O)Ia = K (5a~) 
(1 - «o)/«o = A"0(pure water) (5b) 
In K = In K0-j2im2 (6) 
SGAB = -RT\n K (7) 
d6GAJdm2 = RTj21 (8) 
d HH A J Sm2 = -RT2Qj2JdT) (9) 
3a/Sm2 = a(\ - a)j2[ (10) 
(C2°)eq - «52°)„ = 0 (11) 
(S2°)cq - (S2°)„ = -a(\ - a)mx5HA^2]/T (12) 
(Cp2)eq " (Cp2)« = Ra(I - a)(\ - 2a)mx(MA,B/RT)2 - 2«(1 - (13) 

a)mldHAfi Qj2JdT) 
At 298 K., a0 = 0.694, m, = 55.5 molal, <5//AB = 2510 cal/mol (14) 
ddGA,B/dm2 = -5.99(AS°lw-AS°2M) ' (15) 
dSHAJdm2 = 2.994( AC°p2iw + AC°p2(vap)) - 4.921 (AS°2,W - (16) 

A S \ M ) 

number of these variables depends on the chosen model. In the 
model adopted here, a single variable a (defined below) is suf­
ficient. The following equations are therefore specialized for 
networks depending on a single variable. 

Like any intensive variable of state, the thermodynamic variable 
a expresses the average value for the liquid, the average being 
taken over microscopic fluctuations. When a solute is added, the 
average will probably change. If the change can somehow be 
measured, the molal increment da/dm2 expresses the molal 
network perturbation by the specific solute. 

In the author's thermodynamic analysis,6 one compares a partial 
molar property measured at equilibrium with the corresponding 
partial molar property for a solution process in which the ther­
modynamic state of the solvent network remains constant. For 
solution processes at constant T and P, first let G = G(nh n2, a, 
T, P). Let y = (dG/da)n]„lTP. Then change variables so that 
G = G(nh n2, y, T, P). The change from a to y is useful because 
at equilibrium, ^ = O. Since y is a partial derivative of G with 
respect to the primary variable a, the change of variable is like 
that in a Legendre transformation,15 a familiar operation in 
thermodynamics.16 Equation 1 follows directly. The first term 

Sd(A =(^.\ +y( — \ (1) 

isodelphic lyodelphic 

on the right in (1) expresses the partial molar change in G for 
a solution process in which the thermodynamic state of the solvent 

(15) The author is indebted to Prof. Jeong-Long Lin of Boston College for 
calling this matter to his attention. 

(16) Callen, H. B. Thermodynamics; Wiley: New York, 1960; Chapter 
5. 
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Table III. Fit of Regular Solution Theory (Equations 17 and 18) and Isodelphic Free Energy Test at 298 K" 

Grunwald 

solute 

He 
Ne 
Ar 
Kr 
Xe 
H2 
O2 

N2 
CO 
CH4 

C2H6 

all solutes: 
mean dev 

AS°2iM 

nonpolar0 

-10.2 ± 0.8 (16) 
-10.7 ± 1.0 (16) 
-13.0 ± 0.5 (16) 
-13.6 ± 0.5 (15) 
-15.0 ± 0.5 (7) 
-11.3 ± 0 . 3 (9) 
-13.4 ± 0 . 6 (6) 
-11.8 ± 1.0 (5) 
-12.9 ± 0.4 (5) 
-14.4 ± 1.1 (10) 
-16.1 ± 0.6 (6) 

0.7 

polarr 

-10.4 ± 1.0 (7) 
-10.8 ± 0.9 (8) 
-13.3 ± 0.5 (6) 
-14.0 ± 0.4 (5) 
-15.0 ± 0.4 (5) 
-12.6 ±0 .2 (3) 
-13.8 (2) 
-13.5 (2) 
-13.9 (2) 
-14.6 (2) 
-16.2 (2) 

0.6 

fit of AGC 

nonpolar' 

78 (16) 
82 (16) 
81 (16) 

85(7) 
78 (10) 

83 (10) 

99 (10) 
75 (10) 

82 

< b 
2 , M 

polarc 

255 (8) 
295 (8) 
196(7) 

273 (6) 
124 (4) 

329 (4) 

194 (3) 
216 (4) 

242 

fit of 
AC2V 

336 
637 
112 

66 
171 

3 

229 
511 

296 

'Data from ref 8. 'Mean deviation from eq 18, in cal/mol. Solute, V1, S2 (cal1/2 cm"3/2): He, 18, 0.80; Ne, 31.4, 4.01; Ar, 42.5, 5.84; Xe, 68, 6.93; 
H2, 19.1, 2.66; N2, 35.5, 5.01; CH4, 52, 6.95; C2H6, 70, 7.02. References 23 and 24. Values in italics were adjusted by least squares, 
parentheses denotes number of solvents. d5w = 14.14 ± 0.2; absolute value of deviation, in cal/mol. 

'Number in 

network remains constant. The second term, proportional to 
da/dn2, expresses the effect of solute-perturbation of the solvent 
network. 

At equilibrium (eq), y = 0 and_(dG/'dn1)eq„i Tf = G2. Hence 
eq 1 shows that at equilibrium, G2 = {dG/dn2)a„lTy, the term 
due to solute perturbation of the solvent network goes to 0. 

Extension of this approach to second and third derivatives of 
the free energy gives equations for the partial molar entropy and 
heat capacity. These equations and related definitions are listed 
in Table I. In contrast to the partial molar free energy, the partial 
molar entropy and heat capacity at equilibrium retain terms 
involving da/dn2. These properties are therefore sensitive to solute 
perturbation of the solvent network. 

The equations in Table I are valid whenever the state of the 
solvent network depends on a single variable. Since they apply 
at any solute concentration, they apply also in the reference state 
for activity coefficients and in the standard state of unit activity. 
Accordingly, the standard partial molar free energy is also in­
sensitive to solute perturbation of the solvent network, while the 
standard entropy and heat capacity are sensitive. 

To facilitate discussion, the previously employed "delphic" 
terminology17 will be used. If the thermodynamic state of the 
solvent network remains constant, the solution process is called 
isodelphic. Partial molar contributions due to solute-perturbation 
of the solvent network in a solution process are called lyodelphic. 
Dissection of a partial molar property into isodelphic and lyo­
delphic additive terms is called delphic dissection. In this ter-
minology,_at equilibrium G°2 is always purely isodelphic, while 
S°2 and C°P2 can be resolved into isodelphic and lyodelphic 
contributions. 

Table II outlines the application of the two-state model of the 
water network18 to the thermodynamic equations. More complete 
derivations have been given in ref 6. Excepting (22b), eq 20-23 
in ref 6 apply without change. Equation 22b, i.e., the assumption 
that d5HAB/dm2 = 0, is now dropped. Moreover, because of the 
change in model from sitewise equilibrium (per H bond) to 
statewise equilibrium (per molecule), factors of 2 in eq 24-26 are 
now omitted. Equation 25b is now corrected to include a negative 
sign,6b and the expression for C°p2 is revised accordingly. 

The key equations of the two-state model are eq 5-10 in Table 
II. Substitution in (3) and (4) then leads to (12) and (13). 
Equations 11-13 are written so that the right-hand side expresses 
the lyodelphic term, i.e., the solute-perturbation of the water 
network. Assuming that the terms on the left can be evaluated 
(next section), the solute perturbation of the water network can 
be analyzed as follows. Equation 12 for the entropy, with (14) 
and (10), permits evaluation of j 2 h the solute-network interaction 

(17) A reader who knows the reputation of the Delphic Oracle may see 
some humor here. 

(18) Following tradition, the word "state" is used in this paper with two 
different meanings, to denote either the thermodynamic "state" of the ma­
croscopic solution or the microscopic "state" of the network environment 
surrounding a water molecule. 

constant, and of da/dm2, the molal network perturbation. 
Equation 13 for the heat capacity, with (9), then permits evalu­
ation of d5HAS/dm2, the effect of the solute on the difference in 
molar enthalpy of the two network states. These properties will 
be useful for devising a model of the network perturbation. 

Delphic Dissection. In evaluating the lyodelphic contributions 
to the entropy and heat capacity according to eq 12 and 13, the 
equilibrium values will be experimental results8'1314'19-21 and the 
isodelphic values will be predicted. The basis for prediction is 
as follows. 

In water there are two kinds of solvation effects, direct sol­
vent-solute interaction and solute perturbation of the water 
network, which are expressed respectively by the isodelphic and 
lyodelphic terms. The direct solvent-solute interaction involves 
the same physical mechanisms in water as in molecular solvents. 
The main difference is that the water molecules, being part of 
a network, are less orientable. However, according to the Ost-
er-Kirkwood model for the dielectric constant,22 the water network 
is quite flexible, and the orientational constraints may be unim­
portant. Suppose that a correlation model exists which predicts 
free energy, entropy, and heat capacity in molecular solvents. 
These functions are not independent; microscopically they come 
from the same potential function and energy levels. Thus, if it 
can be shown that the correlation model fits any one of the iso­
delphic functions in water, it will probably fit the others as well. 
Fortunately, the partial molar free energy is purely isodelphic and 
thus may be used to test the applicability of the correlation model 
to aqueous solutions. 

In the following the regular solution model23 will be used, 
because of its ease of application and wide acceptance. Let g, 
M, and W denote respectively gas phase, molecular solvent, and 
water. Let AS°2,M = S°2(M) - S°2(g), AS°2,W = 5°2(W) -
S°2(g), and similarly for heat capacity. The regular solution 
equations then are eq 17-19; S is the solubility parameter, v is 
the molar volume, and vap denotes vaporization of the pure liquid. 

A5°2,M = -AS°2(vap) (17) 

S1)
2 (18) 

(19) 

A test of the regular solution model for a series of nonpolar 
solutes in molecular solvents and an isodelphic free energy test 

AG°2,M = -AG°2(vap) + C2(S2 

AC°p2,M = -AC°p2(vap) 

(19) Benson, B. B.; Krause, D. J. Chem. Phys. 1976, 64, 689. 
(20) Dec, S. F.; Gill, S. J. / . Solution Chem. 1985, 14, 417. 
(21) Gill, S. J.; Nichols, N.; Wadso, I. J. Chem. Thermodyn. 1976, 8, 445. 
(22) Oster, G.; Kirkwood, J. G. J. Chem. Phys. 1943, 11, 175. 
(23) (a) Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. Regular and 

Related Solutions; Van Nostrand Reinhold Co.: New York, 1970. (b) 
Because solutions of nonpolar solutes in water are interstitial rather than 
substitutional, a strict prediction of AG°2W according to regular solution 
theory should use a modified eq 18 in which a term, -RT In g, is added on 
the right; g = average number of interstitial sites per water molecule. When 
this is done, the fit of AG°2,s/7 reaches an optimum of 0.8 cal/(mol-K) when 
g is in the range 2-4. 
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Table IV. Delphic Dissection of Thermodynamic Data at 298 K" 
lyodelphic 
difference 

(20) 

solute 

He 
Ne 
Ar 
Kr 
Xe 
H2 
N2 

O2 

CO 
CH4 

C2H6 

C3H8 

"-C4Hj0 

"-C6H14 

'-C6H12 

C2H2 

C2H4 

C6H6 

MeC6H5 

EtC6H5 

/!-PrC6H5 

A£°2,W 

-24.1 
-26.3 
-30.6 
-32.3 
-34.2 
-25.4 
-31.2 
-31.0 
-30.7 
-31.7 
-36.1 
-38.9 
-41.6 
-48.2 
-45.1 
-26.1 
-31.9 
-36.8 
-40.8 
-44.6 
-48.4 

AC°p2W 

28.1 
35.5 
44.5 
50.2 
60.0 
34 
45.2 
45.9 
46 
52 
68 
79 
93 

117 
98 
36.8 
56.5 
66 
78 
90 

108 

^ > ° 2 , M 

-10.2 
-10.7 
-13.1 
-13.7 
-15.0 
-11.6 
-12.2 
-13.5 
-13.2 
-14.4 
-16.2 
-16.7 
-18.6 
-22.1 
-22.4 
-15.1 
-15.8 
-23.0 
-23.9 
-25.2 
-26.3 

A C ° P 2 I M 

8 
8 
8 
8 
8 
9 
9 
9 
9 
9 

10 
11 
11 
13 
12 
9 

10 
13 
13 
14 
15 

•^2.1yo 

-13.9 
-15.6 
-17.5 
-18.6 
-19.2 
-13.8 
-19.0 
-17.5 
-17.5 
-17.3 
-19.9 
-22.2 
-23.0 
-26.1 
-22.7 
-11.0 
-16.1 
-13.8 
-16.9 
-19.4 
-22.1 

*-p2,lyo 

20 
28 
36 
42 
52 
25 
36 
37 
37 
43 
58 
68 
82 

104 
86 
28 
46 
53 
65 
76 
93 

"Units: cal/(mol-K). References 8, 13, 14, 19, 20. 

Table V. Solute-Perturbation of the Water Network, 298 K 

solute J21" da/dm2
b 

d5HKB/ 
dm/ AH. 

He 
Ne 
Ar 
Kr 
Xe 
H2 

N2 

O2 

CO 
CH4 

C2H6 

C3H8 

"-C4H10 

"-C6H14 

C-C6H12 

0.140 
0.158 
0.177 
0.188 
0.194 
0.140 
0.192 
0.177 
0.177 
0.175 
0.201 
0.224 
0.232 
0.264 
0.230 

0.0298 
0.0336 
0.0376 
0.0400 
0.0412 
0.0296 
0.0408 
0.0376 
0.0376 
0.0372 
0.0427 
0.0477 
0.0493 
0.0561 
0.0487 

5.4 
6.1 
6.8 
7.2 
7.5 
5.4 
7.4 
6.8 
6.8 
6.7 
7.7 
8.6 
8.9 

10.1 
8.8 

6.2 (14)« 
6.5 (6) 
7.2 (6) 
7.6 (5) 
8.2 (9) 
6.7 (21) 
7.3 (-1) 
7.2 (6) 
7.3 (7) 
7.6(13) 
8.6 (11) 
9.4 (9) 

10.0 (12) 

128 
161 
194 
217 
250 
143 
201 
197 
197 
214 
272 
313 
359 
440 
369 

-1310 
-1460 
-1580 
-1670 
-1850 
-1470 
-1500 
-1600 
-1600 
-1770 
-1960 
-2020 
-2230 
-2400 
-2320 

"kg/mol; eq 12 and 14. 4kg/mol; eq 10. cEquation 23. ''Equation 
24b. Collision diameters (A) at 298 K, ref 30: He, 2.29; Ne, 2.69; Ar, 
3.63; Kr, 4.11; Xe, 4.82; H2, 2.97; N2, 3.74; O2, 3.60; O atom, 3.19; 
CO, 3.74; CH41 4.14; C2H6, 5.27; C3H8, 6.20; M-C4H10, 6.88; H2O, 
4.67. 'Equation 16; cal kg rnol"2. -^cal/mol; eq 29. ^Number in par­
entheses denotes % difference between J and srp. 

in water are given in Table III. It can be seen that AS°2iM is 
nearly independent of the solvent, with a precision of ca. 0.7 
cal/(mol-K). There is little if any difference between nonpolar 
and polar molecular solvents. Equation 18 for AG°2M fits better 
in nonpolar than in polar solvents. However, the mean error of 
fit of AG°2M/T in polar solvents, 0.8 cal/(mol-K), is compatible 
with the variability of AS°2M . Extension to water evaluates 5W 

as 14.1 ± 0.2 cal1/2 cm"3/2 and reproduces AG°2 ,M/7"'w ' th a mean 
error of 1.0 unit.23b Interestingly, the value obtained for the <5W 

parameter nearly agrees with Hansen's (52
dispersion + 52poiar)1/2 f° r 

water,24 without the parameter for hydrogen bonding. 
Sufficient data are not available for testing eq 19 in molecular 

solvents, and this equation will be used without test. Data for 
ACp2(vap) will be taken from a review by Shaw,25 or estimated 
with an accuracy of 1 cal/(mol-K) by methods described by Shaw25 

and Benson.26 

The actual delphic dissection is summarized in Table IV. The 
key equations are (20) and (21). The errors of the lyodelphic 

(24) Barton, A. F. M. Handbook of Solubility Parameters and Other 
Cohesion Parameters; CRC Press: Boca Raton, FL, 1983. 

(25) Shaw, R. J. Chem. Eng. Data 1969, 14, 461. 
(26) Benson, S. W. J. Am. Chem. Soc. 1978, 100, 5640. 
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(S°2)eq - (S°2)a = AS°2.W - AS°2,M(av) 

(C°p2)eq - (C%2)a = AC°p2.w + AC°p2(vap) (21) 

entropies based on (20) are of the order of 1 cal/(mol-K), or 
5-10%. The errors of the lyodelphic heat capacities based on (21) 
are 3-5 cal/(mol-K), or 5-15%. 

Hydration Shell. Nearest Neighbor Model. The lyodelphic 
differences in Table IV will now be analyzed in terms of the 
equations listed in Table II for the two-state model of the water 
network. State A, with fraction a, is defined to be the state of 
relatively low energy, low entropy, and large volume. Network 
parameters at 298 K are given in (14). 

The analysis is summarized in Table V. The interaction 
constants J12, calculated by eq 12, lead directly (eq 10) to values 
of da/dm2. Since these values are positive, the nonpolar solutes 
induce the formation of the low-energy, low-entropy water 
molecules belonging to state A. This is of course a well-known 
conclusion. Gurney4 has described this shift in the water network 
as "structure making", and H. S. Frank5 has described it as 
formation of four-coordinated "patches of ice". It should be noted, 
however, that Table V quantifies the effect. 

In the author's view, the chief driving force for the shift toward 
state A is the 15-20% greater statewise volume associated with 
state A. The solution process in water differs from that in mo­
lecular solvents in one crucial respect. Solution in a molecular 
solvent is essentially substitutional,21 that is, the solute essentially 
takes the place of a solvent molecule in the liquid lattice. In water, 
by contrast, a nonpolar molecule cannot substitute for a water 
molecule in the water network—it lacks the necessary hydro­
gen-bonding functions. Solution therefore must be regarded as 
interstitial, even though in most cases the solute molecules are 
not relatively small. Steric and spatial requirements of the solute 
molecule will be unusually important. The phenomenon of 
"solute-perturbation of the water network" from this point of view 
is just the rearrangement of network strands so as to create suitable 
cavities for the solute. Given two states of water molecules with 
quite different molecular densities in their surrounding networks, 
the state with the lower surrounding molecular density is clearly 
more appropriate for interstitial insertion of a solute and thus is 
preferred for being adjacent to the solute. 

For example, in the model favored by the author, a water 
molecule has four hydrogen-bonded neighbors in state A and five 
in state B. It is evident at once that a molecule in state A can 
insert a solute molecule, or part of a solute molecule, into its 
nearest-neighbor shell to produce a configuration with a total of 
five nearest neighbors. On the other hand, the same solute 
molecule probably will not fit next to state B because configu­
rations with a total of six nearest neighbors appear to be over­
crowded. In order for the solute molecule to enter the nearest-
neighbor shell in state B, one of the water molecules must be 
displaced. The central water molecule thus becomes four-hydrogen 
bonded and, by definition, enters state A. 

These ideas find expression in the nearest-neighbor model, 
which will now be stated and tested. Let 5 denote the hydration 
number of the solute, defined as the number of nearest-neighbor 
water molecules. (Later we shall define a second number, the 
occupation number A', which includes non-nearest neighbor 
molecules in network strands inside the hydration shell.) The 
nearest-neighbor model assumes that the s nearest neighbors of 
the solute belong to state A, while the other water molecules 
remain at the same state fractions (aQ, 1 - a0) as in the pure 
solvent. The resulting expression for a is (22). Differentiation 
(eq 23) then relates 5 to da/dm2, which is known from delphic 
dissection. Values obtained for s according to (23) are given in 
Table V. The numbers are of a plausible magnitude. 

mxa = w2s + (w, - W2̂ )(X0 

s = W| (da /3w 2 ) / ( l - Ct0) 

(22) 

(23) 

(27) Gurney, R. W. Introduction to Statistical Mechanics; McGraw-Hill: 
New York, 1949; Chapter 7. 
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Figure 1. Stereographic view of part of a possible solvation shell. Only a portion of the hydrogen bonds in the solvation shell is shown. Large sphere, 
nonpolar solute, a = 3.2 A. Cross-hatched spheres, nearest-neighbor water molecules. Plain spheres, a group of next-nearest-neighbor water molecules 
located in the solvation shell and surrounding one of the nearest-neighbor molecules. 0 - 0 distances range from 2.9 A for hydrogen bonds to 3.2-3.5 
A otherwise. The figure was prepared with C. K. Johnson's version of ORTEP adapted for the IBM-PC by B. Foxman. 

Table VI. Solute-Perturbation of the Water Network by 
Unsaturated Hydrocarbons 

solute J2\ da/dm2
b s„ 

d6HA3/ 
dm2

e 

C2H2 

C2H4 

C6H6 

MeC6H5 

EtC6H5 

W-PrC6H5 

"kg/mol; eq 

0.111 
0.163 
0.140 
0.171 
0.196 
0.223 

12 and 14 

0.0236 
0.0346 
0.0296 
0.0363 
0.0416 
0.0474 

. ''kg/mol; 

8.2 
8.3 

10.6 
11.3 

eq 10. 

1.4 ± 0.2 
0.6 ± 0.2 
1.9 ± 0.2 
1.7 ± 0.2 

'Equation 24b 

138 
217 
227 
278 
323 
387 

. Collision 
diameters at 298 K (ref 30): C2H2, 4.81; C2H4, 4.93; C6H6, 7.45; 
MeC6H5, 8.11; O atom, 3.19; H2O, 4.67. ''Equation 27; s = srp/\.09. 
'Equation 16; cal kg mol~2. 

It is not possible to test the hydration numbers {s) by direct 
comparison with experiment because direct measurements are 
lacking. However, one can compare the results with values 
predicted by an independent theoretical approach. The approach 
used in the following is suggested by Stokes and Robinson's (SR) 
theory for estimating ionic hydration numbers.28 

The pertinent assumption made by SR is that the density of 
water molecules in nearest-neighbor hydration shells agrees with 
Alder's model of random packing of spheres29 and thus is 78% 
of that for closest packing. Let U11 and CT12 respectively denote 
the water-water and water-solute encounter diameters. Treating 
the molecules as spheres, the hydration number then is proportional 
to the ratio of the volume of the nearest-neighbor shell to that 
of a water molecule, as in (24a). The parameter k depends on 
the type of packing. When cr12 = (T11, .s = 12 for closest packing, 
as is well-known. Thus i = 0.78 X 12 = 9.4 for random packing 
(rp). Accordingly, kip = 0.36 and ,Sn, is given by (24b). 

s = k[S + 12<T12/<rn + 6(<r12/ffll)
2] (24a) 

srp = 2.88 + 4.32a12/<T,, + 2.16((T12Z(T11)
2 (24b) 

Before applying (24b) we note that srp depends on the ratio 
of (T12/ (T11. The o-'s should therefore be obtained by a consistent 
method. The author will use collision diameters based on gas 
viscosities at 298 K, for which adequate data exist.30 Furthermore, 
because the solute-solvent attraction is largely due to London 
forces, one may assume that in the hydration shell the water 
oxygen atoms face the solute molecule. Hence (T12 is taken as 
(l/2)(o-Soiute + oo-atom). where (To.atcm is derived from (To_0 by 
allowing for the O-O covalent distance. 

Results for sTp based on (24b) are compared with the results 
for s based on (23) in Table V. For these nonpolar solutes, the 
two methods of predicting hydration numbers agree well. The 
mean discrepancy for 13 solutes is 9 ± 4%. One may reasonably 
attribute 9% to systematic error and 4% to random statistical error. 

Thus, in spite of their different theoretical frameworks, the two 
sets of hydration numbers couid be equal. 

Indeed, the consistency between s and sI? for the non-hydrogen 
bonding solutes in Table V is so good that the greater discrepancies 
for Lewis bases in Table VI may be significant. These unsaturated 
hydrocarbons can act as hydrogen bond acceptors. For example, 
Ravishanker, Mehrotra, Mezei, and Beveridge (RMMB)31 inferred 
from their computer simulation of a quantum system consisting 
of benzene in water that the C6H6 molecule accepts two hydrogen 
bonds, one on each face of the benzene hexagon. The nearest-
neighbor number s of the benzene molecule in a stereographic 
view included in RMMB's paper31 was counted by two unbiased 
viewers as 10 or 11, in agreement with the value of 10.6 obtained 
for slp. It therefore seems worthwhile to expand the model of eq 
22 and 23 so as to include hydrogen bond donation to the solute. 

Let 5 = Sn + sd, where sd is the number of water molecules acting 
as hydrogen bond donors. As before, all water molecules in the 
hydration shell are assumed to be four-hydrogen bonded and thus 
belong to state A. However, the sd molecules which donate a 
hydrogen bond to the solute form only three hydrogen bonds to 
other water molecules. The sd water molecules which are displaced 
then are required by the model to coordinate with water molecules 
outside the hydration shell, so that sd(A) change to sd(B). The 
resulting equations are eq 25-27. If one assumes that slp/1.09 

(25) 

(26) 

s = s„ + Si 

m{a = Sm1 + (w, - [s + sd]m2)a0 

s = W, {da/dm2)/(\ - a0) + sda0/{\ - a0) (27) 

correctly represents s, the lyodelphic results for da/Sm2 can be 
used to deduce sd. Results are shown in Table VI. The values 
are of a plausible magnitude. In particular, the value of 1.9 ± 
0.2 obtained for benzene nearly agrees with RMMB's value31 of 
2. 

In conclusion, it appears that the nearest-neighbor model is 
sufficient to account quantitatively for the negative lyodelphic 
contribution to the entropy of solution of nonpolar nonelectrolytes 
in water. In the terminology of H. S. Frank,5 the "patches of ice" 
built up near the solute can be equated to the nearest-neighbor 
water molecules. The model does not prohibit perturbation of 
the water network beyond the nearest-neighbor shell—in physical 
reality, that is probably unavoidable, but it constrains the per­
turbation so that the ratio of [B]/[A] outside the nearest-neighbor 
shell remains practically constant. 

Perturbation of Statewise Enthalpy. In addition to an uncom­
monly negative entropy of solution, nonpolar solutes in water 
display an uncommonly positive heat capacity of solution32 —so 
much so as to cause surprise. As Table IV shows, the isodelphic 
contribution is fairly small, and most of the heat capacity is 

(28) Stokes, R. H.; Robinson, R. A. Trans. Faraday Soc. 1957, 53, 301. 
(29) Alder, B. J. J. Chem. Phys. 1955, 23, 263. 
(30) Landolt-Bornstein Tabellen Zahlenwerte and Funktionen; 1950, 1, 

Part 1, pp 325 and 369. 

(31) Ravishanker, G.; Mehrotra, P. K.; Mezei, M.; Beveridge, D. L. J. Am. 
Chem. Soc. 1984, 106, 4102. 

(32) Similarly large values of heat capacities of activation for solvolysis 
in aqueous solutions have been reviewed: Blandamer, M. J.; Scott, J. M. W.; 
Robertson, R. E. Prog. Phys. Org. Chem. 1985, 15, 149. 
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Figure 2. Same configuration as in Figure 1, showing directions (-, 
arrow) of water dipoles in the solvation shell near the forward molecule 
(+). Figure was prepared with C. K. Johnson's version of ORTEP adapted 
for the IBM-PC by B. Foxman. 

lyodelphic. Thus, according to eq 16, there is a marked pertur­
bation of 8HAB, the statewise enthalpy difference. 

Values of d8HAB/dm2 are listed in Table V. These numbers 
represent average changes for the entire network, per mole of solute 
added to 1 kg of water. Conceptually, they express a change in 
the interaction of water molecules with their surrounding network 
owing to the addition of the solute. Emphatically, they do not 
include enthalpies of direct solvent-solute interaction—those are 
gathered up in the isodelphic terms. Rather, they express the 
enthalpic consequence of rearranging the strands of the water 
network so as to create a suitable cavity for the solute. 

It is instructive, in first approximation, to examine the values 
in terms of the nearest-neighbor model. We shall assume, as 
before, that only the s water molecules which are nearest neighbors 
to the solute make a significant contribution. The molecules 
outside that shell are also perturbed, but we shall assume that 
their perturbations are relatively small and nearly cancel in SHA B 

= HB - HA. Recalling that the 5 nearest neighbors exist in state 
A, let AHA,nwk denote the molar enthalpy change defined in (28). 
A//Anwrk then is related to dSHAB/dm2 according to (29). 

A#A,nwrk = //A(nearest neighbor) - //A(bulk) (28) 

A#Anwrk = -w, (dSHKB/dm2)/s (29) 

Results obtained on this basis are included in Table V. They 
are remarkable in two respects. First, the numbers are 
negative—the strands of the water network rearrange to accom­
modate the solute in such a way that the molar enthalpy due to 
interaction of the nearest-neighbor water molecules with their 
surrounding network decreases. Second, the magnitudes are 
large—so much so that one has cause to worry whether the delphic 
approach is valid. (In a previous paper6 the author had even 
assumed, incorrectly, that dSHAB/ dm2 = 0.) The following 
analysis will show, however, that values of this magnitude are quite 
possible. 

For definiteness, consider the conceptual model of a solvation 
shell shown in stereographic view in Figure 1. (The large sphere 
is the solute, the others represent water molecules.) The model 
assumes that s = 6 and that the nearest neighbors (cross-hatched 
spheres) occupy octahedral sites. The relatively polarizable oxygen 
atoms are directed toward the solute molecule. Each nearest-
neighbor water molecule by hypothesis forms two H-donor and 
two H-acceptor hydrogen bonds. The H-donor bonds are not 
shown in Figure 1; they face into the bulk liquid and represent 
normal network strands. The H-acceptor bonds face into the 

solvation shell, toward sites not already occupied by nearest 
neighbors. That limits their possible directions, and Figure 1 shows 
part of a likely, sterically possible, configuration. The H-acceptor 
bonds here go to water molecules located near the corners of an 
imaginary cube whose face-centers are occupied by the nearest 
neighbors. These water molecules (plain spheres in Figure 1) are 
next-nearest neighbors to the solute. Their maximum number 
is limited by the number of available "corners", and about half 
of them donate both of their two H-donor bonds to a nearest 
neighbor. (In Figure 1 the fraction is exactly x J2 because in the 
complete solvation shell, 8 "corner" water molecules donate 12 
hydrogen bonds to 6 nearest neighbors.) 

For A//Anwrk, the key facts in this model are as follows: (1) 
Each nearest-neighbor water molecule now has 6 water molecules 
relatively close-by—four that are hydrogen bonded and two that 
are not. Four of the close-by molecules are at or near corners 
(cf. the plain spheres in Figure 1). The other two are in bulk water. 
(2) As shown in Figure 2, the dipoles of the six near-by molecules 
are oriented so as to produce attractive dipole-dipole interactions. 
Thus, even though each nearest-neighbor water molecule forms 
only four hydrogen bonds, two non-hydrogen-bonded water 
molecules also exist nearby and cause a substantial reduction in 

A-#A.nwrk-
In constructing the common geometry of Figures 1 and 2, no 

attempt was made to optimize the dipole-dipole interaction energy. 
For the geometry shown, the dipole-dipole energy is -1.1 kcal.33 

By comparison, for Ne and Ar (whose s numbers and sizes the 
model nearly simulates), A//Anwrk = -1.5 kcal, of similar mag­
nitude. 

If one overlooks the distinction between nearest and next-nearest 
neighbors and simply adds up all the water molecules residing 
in the solvation shell, the total occupation number A' thus obtained 
is considerably greater than s. Each of the s nearest neighbors 
has two hydrogen bonds directed into the solvation shell, but 
perhaps half of them end in a common water molecule. The total 
occupation number N therefore should be between 2s and 3s. This 
prediction is consistent with results from computer simulations. 
Two examples will be cited. For benzene, according to Table VI, 
.s =a Jn,/1.09 = 9.7, while N, according to RMMB,31 is 23. Hence 
N/s c* 2.4. For argon, .$ = 6.8 while N, according to Alagona 
and Tani,34 is 17. Hence N/s =* 2.5. 

In summary, because each nearest-neighbor water molecule 
forms four hydrogen bonds, geometrical constraints force an 
average of two, or nearly two, of the emanating network strands 
to pass through the hydration shell, with dipole orientations which 
give highly significant extra attractive interactions. The order 
of magnitude of the lyodelphic results in Table V can be nearly 
reproduced by a simple model. More exacting tests by computer 
simulation are being planned. 

Strong evidence has been accumulating recently that the partial 
molar heat capacity of nonelectrolytes in dilute aqueous solution 
is an additive-constitutive property of molecular structure.35 In 
terms of delphic dissection this implies, with high probability, that 
AHA nw!.k is also an additive-constitutive property. It therefore 
seems likely that a rational structural theory for hydration shells 
around nonelectrolyte molecules can be developed. 
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(33) The general eq 9 of ref 7, rather than the specialized eq 11, was used. 
(34) Alagona, G.; Tani, A. J. Chem. Phys. 1980, 72, 580. 
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